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Abstract. Let S be a χ
′
st -set of G. A subset T ⊆ S is called a forcing subset for S if S is the unique χ

′
st -set containing

T . The forcing star-edge chromatic number f
χ
′
st
(S) of S in G is the minimum cardinality of a forcing subset for

S. The forcing star-edge chromatic number f
χ
′
st
(G) of G is the smallest forcing number of all χ

′
st -sets of G. Some

general properties satisfied by this concept are studied. It is shown that for every pair a and b of integers with

0 ≤ a < b and b > a+ 2 there exists a connected graph G such that f
χ
′
st
(G) = a and χ

′
st(G) = b, where χ

′
st(G) is

the star edge chromatic number of a graph.
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1. INTRODUCTION

By a graph G = (V,E), we mean a finite,undirected connected graph without loops or

multiple edges. The order and size of G are denoted by n and m respectively. For basic graph

theoretic terminology, we refer to [1]. Two vertices u and v are said to be adjacent if uv is

an edge of G. If uv ∈ E(G), we say that u is a neighbor of v and denote by N(v), the set of
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neighbors of v. The degree of a vertex v ∈ V is deg(v) =| N(v) |. A vertex v is said to be a

universal vertex if deg(v) = n−1.

A p-vertex coloring of is an assignment of p colors, 1,2, ..., p to the vertices of G, the coloring

is proper if no two distinct adjacent vertices have the same color. If χ(G) = p, G is said to be

p - chromatic, where p ≤ k. A set C ⊆ V (G) is called chromatic set if C contains all vertices

of distinct colors in G. The Chromatic number of G is the minimum cardinality among all

the chromatic sets of G. That is χ(G) = min{|Ci|/ Ci is a chromatic set of G }. The concept

of the chromatic number was studied in [1,2,4,5,8,9,13]. A star colouring of a graph G is

proper colouring such that no path of length 4 is bicolourable. The minimum colours needed

for a star coloring of G is called star chromatic number and is denoted by χs(G). Let G be

a star colourable. A set S ⊆ V (G) is called a star chromatic set if S contains all vertices of

distinct colours in G. Any star chromatic set of order χs(G) is called a χs-set of G. The edge-

chromatic number χe(G) of G is defined to be the least number of colours needed to colour

the edges of G in such a way that no two adjacent edges have the same colour. The concept of

edge chromatic number was studied in [1,14]. A star edge colouring of a graph G is a proper

colouring without bichromatic 4-paths and 4-cycles and is denoted by χ
′
st(G). Let G be a star

edge colourable graph. A set S⊆ E(G) is called a star edge chromatic set if S contains all edges

of distinct colours in G. Any star edge chromatic set of order χ
′
st(G) is called a χ

′
st-set of G. The

concept of the star edge chromatic number was studied in [3,6,7,10]. The chromatic number

has application in Time Table Scheduling, Map coloring, channel assignment problem in radio

technology, town planning, GSM mobile phone networks etc [8,9]. The following theorem is

used in the sequel.

Theorem 1.1. [14] For a complete graph G = Kn (n≥ 2), χ
′
st(G) = n.

2. THE FORCING STAR EDGE CHROMATIC NUMBER OF A GRAPH

Definition 2.1. Let S be a χ
′
st-set of G. A subset T ⊆ S is called a forcing subset for S if S is the

unique χ
′
st-set containing T . The forcing star-edge chromatic number f

χ
′
st
(S) of S in G is the
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minimum cardinality of a forcing subset for S. The forcing star-edge chromatic number f
χ
′
st
(G)

of G is the smallest forcing number of all χ
′
st-sets of G.

Example 2.2. For the graph G of Figure 2.1, S1 = {e1,e2,e3,e4,e5,e8}, S2 =

{e1,e2,e3,e5,e7,e8}, S3 = {e1,e3,e4,e5,e6,e8} and S4 = {e1,e3,e5,e6,e7,e8} are the χ
′
st-sets

of G such that f
χ
′
st
(Si) = 2, for i = 1 to 4 so that χ

′
st(G) = 6 and f

χ
′
st
(G) = 2.
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Observation 2.3. For every connected graph G, 0≤ f
χ
′
st
(G)≤ χ

′
st(G).

Remark 2.4. The bounds in Observation 2.3 are sharp. For the graph G given in Figure

2.2, S = E(G) is the unique χ
′
st-set of G such that f

χ
′
st
(G) = 0. For the graph G = C6 with

edge set E(G) = {e1,e2,e3,e4,e5,e6}, S1 = {e1,e2,e3}, S2 = {e2,e3,e4}, S3 = {e1,e2,e6},

S4 = {e2,e4,e6}, S5 = {e1,e3,e5}, S6 = {e3,e4,e5}, S7 = {e1,e5,e6} and S8 = {e4,e5,e6} are

the only eight χ
′
st-sets of G such that f

χ
′
st
(Si)= 3 for 1≤ i≤ 8 so that χ

′
st(G)= 3 and f

χ
′
st
(G)= 3.

Also the bounds are strict. For the graph G given in Figure 2.1, χ
′
st(G) = 6, f

χ
′
st
(G) = 2. Thus

0 < f
χ
′
st
(G)< χ

′
st(G).

 

𝑒1 

 
𝑒4 𝑒5 

 

𝑒2 
𝑒3 1 3 

2 

4 5 

𝐺 
Figure 2.2 

  



4 R. SUGANYA, V. SUJIN FLOWER

Definition 2.5. An edge e of a graph G is said to be a star edge chromatic edge of G if e belongs

to every χ
′
st-set of G.

Example 2.6. For the graph G of Figure 2.3, S1 = {e1,e2,e3,e6}, S2 = {e1,e3,e4,e6}, S3 =

{e1,e4,e3,e6} are the χ
′
st-sets of G such that e1 and e6 are a star edge chromatic edge of G.
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Theorem 2.7. Let G be a connected graph of order n ≥ 3 with 4(G) = n− 1. Let x be a

universal vertex of G and e be an edge incident with x. Then e is a star edge chromatic edge of

G.

Proof. On the contrary, suppose e is not a star edge chromatic edge of G. Then there exists a

χ
′
st-set S such that e = xv. Let c(e) = c1. Since e 6∈ S, there exists f = yz ∈ E(G) such that

c( f ) = c1 and y 6= x, v and z 6= x,v. Since e and f are not adjacent, e and f are edges of a path

P of length 4. Hence it follows that P is bi-colourable, which is a contradiction. �

Observation 2.8. Let G be a connected graph. Then

(a) f
χ
′
st
(G) = 0 if and only if G has a unique χ

′
st-set.

(b) f
χ
′
st
(G) = 1 if and only if G has at least χ

′
st-set, containing one of its elements and

(c) f
χ
′
st
(G) = χ

′
st(G) if and only if χ

′
st-set of G is the unique minimum χ

′
st-set containing any of

its proper subsets.

Theorem 2.9. Let G be a connected graph and W be the set of all star edge chromatic edges of

G. Then f
χ
′
st
(G)≤ χ

′
st(G)− |W |.

Proof. Let S be any χ
′
st-set of G. Then χ

′
st(G)=| S |, W ⊆ S and S is the unique χ

′
st-set containing

S−W . Thus f
χ
′
st
(G)≤| S−W |=| S | − |W | = χ

′
st(G)− |W |. �



THE FORCING STAR-EDGE CHROMATIC NUMBER OF A GRAPH 5

Observation 2.10. (a) For the complete graph G = Kn (n≥ 2), f
χ
′
st
(G) = 0.

(b) For the star G = K1,n−1 (n≥ 3), f
χ
′
st
(G) = 0.

(c) For the double star G = K2,r,s, f
χ
′
st
(G) = 0.

Theorem 2.11. For the complete bipartite graph G = Kr,s (1≤ r ≤ s),

f
χ
′
st
(G) =



0 if r = 1,2, s ≥ 2

s−1 if r = 2, s ≥ 3

s if r = 3, s ≥ 3

s+ r−3 if r ≥ 4,s≥ 4

Proof. If r = 1 and s ≥ 2, then the result follows from Observation 2.10(b). For r = 2 and

s = 2, the result follows from Theorem 2.13. So, let 2 ≤ r ≤ s. Let X = {x1,x2, ...,xr} and Y

= {y1,y2, ...,ys} be the bipartite sets of G. Let r = 2 and s ≥ 3. Let e1 j = x1y j and e2 j = x2y j

(1≤ j≤ s), assign c(e1 j)= c j (1≤ j≤ s) and c(e2 j)= c j+1 (1≤ j≤ s−1) and c(e2s)= s+1 so

that χ
′
st(G) = s+1. Since {e11,e2s} is the set of all star edge chromatic edge of G, by Theorem

2.9, f
χ
′
st
(G) ≤ s+ 1− 2 = s− 1. Let S be a star edge chromatic edge set of G. We prove that

f
χ
′
st
(S) = s−1. On the contrary suppose that f

χ
′
st
(G)≤ s−2. Then there exists a forcing subset

T of S such that | T |≤ s− 2. Let e ∈ S such that e 6∈ T . Then e is not a star edge chromatic

edge of G. Without loss of generality, let us assume that c(e) = c1. Since s ≥ 3, there exists

f ∈ E(G) such that c( f ) = c1. Let S′ = [S−{e}]∪{ f}. Then S′ is a χ
′
st-set of G. Hence T is a

proper subset of a χ
′
st-set S′ of G, which is a contradiction. Therefore f

χ
′
st
(G) = s−1.

Let r = 3, s ≥ 3. Let ei j = x1y j, e2 j = x2y j, e3 j = x3y j (1 ≤ j ≤ s). Assign c(e1 j) = c j (1 ≤

j ≤ s),c(e2 j) = c j+1 (1 ≤ j ≤ s− 1), c(e3 j) = c j+2 (1 ≤ j ≤ s− 2) and c(e3s) = s + 2 so

that χ
′
st(G) = s+ 2. Since {e11,e3s} are the star edge chromatic edges of G, by Theorem 2.9,

f
χ
′
st
(G)≤ s+2−2 = s. Let S be a star edge chromatic edge set of G. We prove that f

χ
′
st
(G) = s.

On the contrary, suppose that f
χ
′
st
(G) ≤ s− 1. Then there exists a forcing subset T of S such

that | T |≤ s− 1. Let e ∈ S such that e 6∈ T . Then e is not a star edge chromatic edge of G.

Without loss of generality, let us assume that c(e) = c1. Since s≥ 3, there exists f ∈ E(G) such

that c( f ) = c1. Let S′ = [S−{e}]∪{ f}. Then S′ is a χ
′
st-set of G, which is a contradiction.
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Therefore Hence T is a proper subset of a χ
′
st-set S′ of G, which is a contradiction. Therefore

f
χ
′
st
(S) = s. Since this is true for all χ

′
st-set S of G, f

χ
′
st
(G) = s.

Let r≥ 4, s≥ 4. Let ei j = x1y j, e2 j = x2y j,...,ei = xiy j (1≤ i≤ r), (1≤ j≤ s). Assign c(e1 j) =

c j (1≤ j≤ s), c(e2 j) = c j+1 (1≤ j≤ s−1),...,c(ei j) = c j+i−1 (1≤ i≤ r) (1≤ j≤ s− i+1) and

c(eis) = s+ r−1 so that χ
′
st(G) = s+ r−1. Since {e11,ers} is the set of all star edge chromatic

edges of G, by Theorem 2.9, f
χ
′
st
(G)≤ s+ r−3. Let S be a star edge chromatic edge set of G.

We prove that f
χ
′
st
(S) = s+ r−3. On the contrary, suppose that f

χ
′
st
(S)≤ s+ r−4. Then there

exists a forcing subset T of S such that | T |≤ s+ r−4. Let e ∈ S such that e 6∈ T . Then e is not

a star edge chromatic edge of G. Without loss of generality, let us assume that c(e) = c1. Since

s ≥ 3, there exists f ∈ E(G) such that c( f ) = c1. Let S′ = [S−{e}]∪{ f}. Then S′ is a χ
′
st-set

of G. which is a contradiction. Therefore f
χ
′
st
(S) = s+ r−3. Since this is true for all χ

′
st-set S

of G, f
χ
′
st
(G) = s+ r−3. �

Theorem 2.12. For the path G = Pn (n≥ 3), f
χ
′
st
(G) =



0 if n = 3,4

1 if n = 5

2 if n = 6

3 otherwise

Proof. Let Pn be v1,v2, ...,vn and ei = vi−1vi (2≤ i≤ n). For n = 3 and n = 4, S = E(G) is the

unique χ
′
st-set then the result follows from Observation 2.8 (a). For n = 5, S1 = {e1,e2,e3} and

S2 = {e2,e3,e4} are the only χ
′
st-sets of G such that f

χ
′
st
(G) = 1. For n = 6, S1 = {e1,e2,e3}, S2

= {e2,e3,e4}, S3 = {e2,e3,e4}, S4 = {e3,e4,e5} are the only χ
′
st-sets of G such that f

χ
′
st
(G) = 2.

For n≥ 7, we consider the following cases.

Case (i) n = 3r+ 1, r ≥ 2. Assign c(ei) = 1, i = 1,4, ...,3r− 2, c(e j) = 2, j = 2,5, ...,3r− 1,

c(ek) = 3, k = 3,6, ...,3r. Then Si jk = {ei,e j,ek} and Sik = {ei,e3r−2,ek} are the χ
′
st-sets of G

such that χ
′
st(Si jk) = χ

′
st(Sik) = 3 for i, j,k (i = 1,4, ...,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r)

so that χ
′
st(G) = 3. By Observation 2.3, 0 ≤ f

χ
′
st
(G) ≤ 3. Since χ

′
st-set of G is not unique

f
χ
′
st
(G) ≥ 1. It is easily observed that no singleton subsets or two elements subsets of Si jk for

all i, j,k (i = 1,4, ...,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r) is a forcing subset of Si jk so that

fχ

′
st(Si jk) = 3. Similarly no singleton or two element subsets of S jk is a forcing subset of Sik
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so that f
χ
′
st
(S jk) = 3. Since this is true for all χ

′
st-set Si jk for all i, j,k (i = 1,4,3r− 2, j =

2,5, ...,3r−1,k = 3,6, ...,3r) so that f
χ
′
st
(G) = 3.

Case (ii) n = 3r+2, r ≥ 2. Assign c(ei) = 1, i = 1,4, ...,3r+1, c(e j) = 2, j = 2,5, ...,3r−1,

c(ek) = 3, k = 3,6, ...,3r. Then Si jk = {ei,e j,ek}, Si j = {ei,e j,e3r−2}, Si = {ei,e3r+1,e3r−1} are

the χ
′
st-sets of G such that χ

′
st(Si jk)= χ

′
st(Sik)= χ

′
st(Si j)= χ

′
st(Si)= 3 for i, j,k (i= 1,4, ....,3r+

1, j = 2,5, ...,3r− 1,k = 3,6, ...,3r) so that χ
′
st(G) = 3. By Observation 2.3, 0 ≤ f

χ
′
st
(G) ≤ 3.

Since χ
′
st-set of G is not unique f

χ
′
st
(G) ≥ 1. It is easily observed that no singleton subsets or

two elements subsets of Si jk for all i, j,k (i = 1,4, ...,3r+1, j = 2,5, ...,3r−1,k = 3,6, ...,3r) is

a forcing subset of Si jk so that fχ

′
st(Si jk) = 3. Similarly no singleton or two element subsets of

S jk for all i,k (i = 1,4, ...,3r+1,k = 3,6, ...,3r) is a forcing subset of Sik so that f
χ
′
st
(Sik) = 3.

Similarly no singleton subsets or two elements subsets of Si j for all i, j,k (i = 1,4, ...,3r+1, j =

2,5, ...,3r− 1,k = 3,6, ...,3r) is a forcing subset of Si jk so that fχ

′
st(Si jk) = 3. Similarly no

singleton or two element subsets of Si j for all i, j (i = 1,4, ...,3r + 1, j = 2,5, ...,3r− 1) is a

forcing subset of Si j so that f
χ
′
st
(Si j) = 3. Similarly no singleton subsets or two elements subsets

of Si for all i (i = 1,4, ...,3r+1) is a forcing subset of Si so that fχ

′
st(Si)=3. Since this is true for

all χ
′
st-sets Si jk, Sik, Si j and Si for all i, j,k (i = 1,4, ...,3r+1, j = 2,5, ...,3r−1,k = 3,6, ...,3r)

so that f
χ
′
st
(G) = 3.

Case (iii) n = 3r, r ≥ 3. Assign c(ei) = 1, i = 1,4, ...,3r− 2, c(e j) = 2, j = 2,5, ...,3r− 1,

c(ek) = 3, k = 3,6, ...,3r− 3. Then Si jk = {ei,e j,ek} is a χ
′
st-set of G such that χ

′
st(Si jk) =

3 for i, j,k (i = 1,4, ...,3r− 2, j = 2,5, ...,3r− 1,k = 3,6, ...,3r− 3) so that χ
′
st(G) = 3. By

Observation 2.3, 0 ≤ f
χ
′
st
(G) ≤ 3. Since χ

′
st-set of G is not unique f

χ
′
st
(G) ≥ 1. It is easily

observed that no singleton subsets or two elements subsets of Si jk for all i, j,k (i = 1,4, ...,3r−

2, j = 2,5, ...,3r−1,k = 3,6, ...,3r−3) is a forcing subset of Si jk so that fχ

′
st(Si jk) = 3. Since

this is true for all χ
′
st-set Si jk for all i, j,k (i = 1,4, ...,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r−

3) so that f
χ
′
st
(G) = 3. �

Theorem 2.13. For the cycle G =Cn (n≥ 4), f
χ
′
st
(G) =


0 if n = 4,5

3 otherwise
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Proof. Let Cn be v1,v2, ...,vn,v1 and ei = vi−1vi (2 ≤ i ≤ n), en = vnv1. For n = 4 and 5, S =

E(G) is the unique χ
′
st-set so that f

χ
′
st
(G) = 0. For n≥ 6, we consider the following cases.

Case (i) n = 3r, r ≥ 2. Assign c(ei) = 1, i = 1,4, ...,3r− 2, c(e j) = 2, j = 2,5, ...,3r− 1,

c(ek) = 3, k = 3,6, ...,3r. Then Si jk = {ei,e j,ek} is a χ
′
st-set of G such that χ

′
st(Si jk) = 3 for all

i, j,k (i = 1,4, ...,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r) so that χ
′
st(Si jk) = 3. By Observation

2.3, 0≤ f
χ
′
st
(G)≤ 3. Since χ

′
st-set of G is not unique f

χ
′
st
(G)≥ 1. It is easily observed that no

singleton subsets or two elements subsets of Si jk for all i, j,k (i= 1,4, ...,3r−2, j = 2,5, ...,3r−

1,k = 3,6, ...,3r) is a forcing subset of Si jk so that fχ

′
st(Si jk) = 3. Since this is true for all χ

′
st-set

Si jk for all i, j,k (i = 1,4,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r) so that f
χ
′
st
(G) = 3.

Case (ii) n = 3r+1, r ≥ 2. Assign c(ei) = 1, i = 1,4, ...,3r−2, c(e j) = 2, j = 2,5, ...,3r−1,

c(ek) = 3, k = 3,6, ...,3r, c(en) = 4, n = 3r + 1. Then Si jkn = {ei,e j,ek,en} and Sikn =

{ei,e3r−2,ek,en} are the χ
′
st-sets of G such that χ

′
st(Si jkn) = χ

′
st(Sikn) = 4 for all i, j,k,n (i =

1,4, ....,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r,n = 3r+1) so that χ
′
st(G) = 4 and f

χ
′
st
(Si jkn) =

f
χ
′
st
(Sikn) = 3. Since this is true for all i, j,k,n (i = 1,4, ....,3r− 2, j = 2,5, ...,3r− 1,k =

3,6, ...,3r,n = 3r+1), f
χ
′
st
(G) = 3.

Case (iii) n = 3r+ 2, r ≥ 2. Assign c(ei) = 1, i = 1,4, ...,3r− 2, c(e j) = 2, j = 2,5, ...,3r−

1, c(ek) = 3, k = 3,6, ...,3r, c(en−1) = 4, n = 3r + 2, c(en) = 5, n = 3r + 2. Then

Si jkn = {ei,e j,ek,en−1,en}, Sikn = {ei,e3r−2,ek,en−1,en}, Si jn = {ei,e j,e3r−1,en−1,en}, Sin =

{ei,e3r−2,

e3r−1,en−1,en} are the only χ
′
st-sets of G such that χ

′
st(Si jkn) = χ

′
st(Sikn) = χ

′
st(Si jn) = χ

′
st(Sin) =

5 for all i, j,k,n (i = 1,4, ....,3r − 2, j = 2,5, ...,3r − 1,k = 3,6, ...,3r,n = 3r + 2) so that

χ
′
st(G) = 5 and f

χ
′
st
(Si jkn) = f

χ
′
st
(Sikn) = f

χ
′
st
(Si jn) = f

χ
′
st
(Sin) = 3. Since this is true for all

i, j,k,n (i = 1,4, ....,3r−2, j = 2,5, ...,3r−1,k = 3,6, ...,3r,n = 3r+2), f
χ
′
st
(G) = 3. �

Theorem 2.14. For every pair a and b of integers with 0 ≤ a < b and b > a+ 2 there exists a

connected graph G such that f
χ
′
st
(G) = a and χ

′
st(G) = b.

Proof. For a= 0 and b≥ 2, let G=Kb. Then by Observation 2.9(a) and Theorem 1.1, f
χ
′
st
(G) =

0 and χ
′
st(G) = b. For a = 1, b = 3, let G = P5. Then by Theorem 2.12, f

χ
′
st
(G) = 1 and

χ
′
st(G) = 3. Let P5 : v1,v2,v3,v4,v5. Let G be the graph obtained from P5 by adding new vertices

z1,z2, ...,zb−3 and introducing edge v1zi (1≤ i≤ b−3). The graph G is shown in Figure 2.4.
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Let c(v1z1) = 1, c(v1z2) = 2, c(v1zb−2) = b−3, c(v1v2) = b−2, c(v2v3) = b−1, c(v3v4) = b,

c(v4v5) = b−2. Then Z = {v1z1,v2z2, ...,v1zb−3,v2v1,v3v4} is the set of all star edge chromatic

edge of G. Then S1 = Z∪{v1v2} and S2 = Z∪{v4v5} are the only two χ
′
st-sets of G such that

f
χ
′
st
(S1) =f

χ
′
st
(S2) = 1 so that f

χ
′
st
(G) = 1 and χ

′
st(G) = b. So, let a≥ 2 and b≥ 4. Let H = K3,a

be a complete bipartite graph with bipartite sets X1 = {x1,x2,x3} and Y1 = {y1,y2, ...,ya}. Let

G be the graph obtained from H by adding new vertices z1,z2, ...,zb−a−2 and introducing edges

x1zi (1≤ i≤ a−2). The graph G is shown in Figure 2.5.

Assign c(x1yi) = ci (1 ≤ i ≤ a), c(x2yi) = ci+1 (1 ≤ i ≤ a), c(x3yi) = ci+2 (1 ≤ i ≤ a),

c(xizi) = ca+2+i (1 ≤ i ≤ b− a− 2). Then C is a proper star edge colouring of G such that

χ
′
st(G) = a+2+b−a−2 = b.

We prove that f
χ
′
st
(G) = a. Let Z = {x1z1,x1z2, ...,x1zb−a−2,x3ya} be the set of all star

edge chromatic edge of G. By Theorem 2.9, f
χ
′
st
(G) ≤ b− (b− a− 2+ 2) = a. Suppose that

f
χ
′
st
(G)< a. Then there exists a forcing subset T of S such that | T |≤ a−1. Let e ∈ Z such that

e 6∈ T . Then e is not a star edge chromatic edge of G. Without loss of generality, let us assume

c(e)= c2. Since a≥ 2, there exists f ∈E(G) such that c( f )= c2. Let Z
′
= [Z−{e}]∪{ f}. Then

Z′ is a χ
′
st-set of G. Hence T is a proper subset of χ

′
st-set of Z′ of G, which is a contradiction.

Therefore f
χ
′
st
(G) = a. �
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3. CONCLUSION

In this paper, we studied the concept of forcing star edge chromatic number of a graph. We

extend this concept to graph products in future work.
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