Available online at http://scik.org
J. Math. Comput. Sci. 2022, 12:51
https://doi.org/10.28919/jmcs/6547
ISSN: 1927-5307

THE FORCING STAR EDGE CHROMATIC NUMBER OF A GRAPH

R. SUGANYA ${ }^{\dagger}, *$, V. SUJIN FLOWER
Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 629 004, India
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India
Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let S be a $\chi_{s t}^{\prime}$-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique $\chi_{s t}^{\prime}$-set containing T. The forcing star-edge chromatic number $f_{\chi_{s t}^{\prime}}(S)$ of S in G is the minimum cardinality of a forcing subset for S. The forcing star-edge chromatic number $f_{\chi_{s t}^{\prime}}(G)$ of G is the smallest forcing number of all $\chi_{s t}^{\prime}-$ sets of G. Some general properties satisfied by this concept are studied. It is shown that for every pair a and b of integers with $0 \leq a<b$ and $b>a+2$ there exists a connected graph G such that $f_{\chi_{s t}^{\prime}}(G)=a$ and $\chi_{s t}^{\prime}(G)=b$, where $\chi_{s t}^{\prime}(G)$ is the star edge chromatic number of a graph.

Keywords: forcing star edge chromatic number; star edge chromatic number; edge chromatic number.
2010 AMS Subject Classification: 05C15.

1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N(v)$, the set of

[^0]neighbors of v. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=|N(v)|$. A vertex v is said to be a universal vertex if $\operatorname{deg}(v)=n-1$.

A p-vertex coloring of is an assignment of p colors, $1,2, \ldots, p$ to the vertices of G, the coloring is proper if no two distinct adjacent vertices have the same color. If $\chi(G)=p, G$ is said to be p - chromatic, where $p \leq k$. A set $C \subseteq V(G)$ is called chromatic set if C contains all vertices of distinct colors in G. The Chromatic number of G is the minimum cardinality among all the chromatic sets of G. That is $\chi(G)=\min \left\{\left|C_{i}\right| / C_{i}\right.$ is a chromatic set of $\left.G\right\}$. The concept of the chromatic number was studied in [1,2,4,5,8,9,13]. A star colouring of a graph G is proper colouring such that no path of length 4 is bicolourable. The minimum colours needed for a star coloring of G is called star chromatic number and is denoted by $\chi_{s}(G)$. Let G be a star colourable. A set $S \subseteq V(G)$ is called a star chromatic set if S contains all vertices of distinct colours in G. Any star chromatic set of order $\chi_{s}(G)$ is called a χ_{s}-set of G. The edgechromatic number $\chi_{e}(G)$ of G is defined to be the least number of colours needed to colour the edges of G in such a way that no two adjacent edges have the same colour. The concept of edge chromatic number was studied in $[1,14]$. A star edge colouring of a graph G is a proper colouring without bichromatic 4-paths and 4-cycles and is denoted by $\chi_{s t}^{\prime}(G)$. Let G be a star edge colourable graph. A set $S \subseteq E(G)$ is called a star edge chromatic set if S contains all edges of distinct colours in G. Any star edge chromatic set of order $\chi_{s t}^{\prime}(G)$ is called a $\chi_{s t}^{\prime}$-set of G. The concept of the star edge chromatic number was studied in [3,6,7,10]. The chromatic number has application in Time Table Scheduling, Map coloring, channel assignment problem in radio technology, town planning, GSM mobile phone networks etc [8,9]. The following theorem is used in the sequel.

Theorem 1.1. [14] For a complete graph $G=K_{n}(n \geq 2), \chi_{s t}^{\prime}(G)=n$.

2. The Forcing Star Edge Chromatic Number of a Graph

Definition 2.1. Let S be a $\chi_{s t}^{\prime}$-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique $\chi_{s t}^{\prime}$-set containing T. The forcing star-edge chromatic number $f_{\chi_{s t}^{\prime}}(S)$ of S in G is the
minimum cardinality of a forcing subset for S. The forcing star-edge chromatic number $f_{\chi_{s t}^{\prime}}(G)$ of G is the smallest forcing number of all $\chi_{s t}^{\prime}$-sets of G.

Example 2.2. For the graph G of Figure 2.1, $S_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{8}\right\}, \quad S_{2}=$ $\left\{e_{1}, e_{2}, e_{3}, e_{5}, e_{7}, e_{8}\right\}, S_{3}=\left\{e_{1}, e_{3}, e_{4}, e_{5}, e_{6}, e_{8}\right\}$ and $S_{4}=\left\{e_{1}, e_{3}, e_{5}, e_{6}, e_{7}, e_{8}\right\}$ are the $\chi_{s t}^{\prime}$-sets of G such that $f_{\chi_{s t}^{\prime}}\left(S_{i}\right)=2$, for $i=1$ to 4 so that $\chi_{s t}^{\prime}(G)=6$ and $f_{\chi_{s t}^{\prime}}(G)=2$.

Figure 2.1

Observation 2.3. For every connected graph $G, 0 \leq f_{\chi_{s t}^{\prime}}(G) \leq \chi_{s t}^{\prime}(G)$.

Remark 2.4. The bounds in Observation 2.3 are sharp. For the graph G given in Figure 2.2, $S=E(G)$ is the unique $\chi_{s t}^{\prime}$-set of G such that $f_{\chi_{s t}^{\prime}}(G)=0$. For the graph $G=C_{6}$ with edge set $E(G)=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}, S_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}, S_{2}=\left\{e_{2}, e_{3}, e_{4}\right\}, S_{3}=\left\{e_{1}, e_{2}, e_{6}\right\}$, $S_{4}=\left\{e_{2}, e_{4}, e_{6}\right\}, S_{5}=\left\{e_{1}, e_{3}, e_{5}\right\}, S_{6}=\left\{e_{3}, e_{4}, e_{5}\right\}, S_{7}=\left\{e_{1}, e_{5}, e_{6}\right\}$ and $S_{8}=\left\{e_{4}, e_{5}, e_{6}\right\}$ are the only eight $\chi_{s t}^{\prime}$-sets of G such that $f_{\chi_{s t}^{\prime}}\left(S_{i}\right)=3$ for $1 \leq i \leq 8$ so that $\chi_{s t}^{\prime}(G)=3$ and $f_{\chi_{s t}^{\prime}}(G)=3$. Also the bounds are strict. For the graph G given in Figure 2.1, $\chi_{s t}^{\prime}(G)=6, f_{\chi_{s t}^{\prime}}(G)=2$. Thus $0<f_{\chi_{s t}^{\prime}}(G)<\chi_{s t}^{\prime}(G)$.

Figure 2.2

Definition 2.5. An edge e of a graph G is said to be a star edge chromatic edge of G if e belongs to every $\chi_{s t}^{\prime}$-set of G.

Example 2.6. For the graph G of Figure 2.3, $S_{1}=\left\{e_{1}, e_{2}, e_{3}, e_{6}\right\}, S_{2}=\left\{e_{1}, e_{3}, e_{4}, e_{6}\right\}, S_{3}=$ $\left\{e_{1}, e_{4}, e_{3}, e_{6}\right\}$ are the $\chi_{s t}^{\prime}$-sets of G such that e_{1} and e_{6} are a star edge chromatic edge of G.

Figure 2.3

Theorem 2.7. Let G be a connected graph of order $n \geq 3$ with $\triangle(G)=n-1$. Let x be a universal vertex of G and e be an edge incident with x. Then e is a star edge chromatic edge of G.

Proof. On the contrary, suppose e is not a star edge chromatic edge of G. Then there exists a $\chi_{s t}^{\prime}$-set S such that $e=x v$. Let $c(e)=c_{1}$. Since $e \notin S$, there exists $f=y z \in E(G)$ such that $c(f)=c_{1}$ and $y \neq x, v$ and $z \neq x, v$. Since e and f are not adjacent, e and f are edges of a path P of length 4. Hence it follows that P is bi-colourable, which is a contradiction.

Observation 2.8. Let G be a connected graph. Then
(a) $f_{\chi_{s t}^{\prime}}(G)=0$ if and only if G has a unique $\chi_{s t^{\prime}}^{\prime}$-set.
(b) $f_{\chi_{s t}^{\prime}}(G)=1$ if and only if G has at least $\chi_{s t}^{\prime}$-set, containing one of its elements and
(c) $f_{\chi_{s t}^{\prime}}(G)=\chi_{s t}^{\prime}(G)$ if and only if $\chi_{s t}^{\prime}$-set of G is the unique minimum $\chi_{s t}^{\prime}$-set containing any of its proper subsets.

Theorem 2.9. Let G be a connected graph and W be the set of all star edge chromatic edges of G. Then $f_{\chi_{s t}^{\prime}}(G) \leq \chi_{s t}^{\prime}(G)-|W|$.

Proof. Let S be any $\chi_{s t}^{\prime}$-set of G. Then $\chi_{s t}^{\prime}(G)=|S|, W \subseteq S$ and S is the unique $\chi_{s t}^{\prime}$-set containing $S-W$. Thus $f_{\chi_{s t}^{\prime}}(G) \leq|S-W|=|S|-|W|=\chi_{s t}^{\prime}(G)-|W|$.

Observation 2.10. (a) For the complete graph $G=K_{n}(n \geq 2), f_{\chi_{s t}^{\prime}}(G)=0$.
(b) For the star $G=K_{1, n-1}(n \geq 3), f_{\chi_{s t}^{\prime}}(G)=0$.
(c) For the double star $G=K_{2, r, s}, f_{\chi_{s t}^{\prime}}(G)=0$.

Theorem 2.11. For the complete bipartite graph $G=K_{r, s}(1 \leq r \leq s)$,
$f_{\chi_{s t}^{\prime}}(G)= \begin{cases}0 & \text { if } r=1,2, s \geq 2 \\ s-1 & \text { if } r=2, s \geq 3 \\ s & \text { if } r=3, s \geq 3 \\ s+r-3 & \text { if } r \geq 4, s \geq 4\end{cases}$

Proof. If $r=1$ and $s \geq 2$, then the result follows from Observation 2.10(b). For $r=2$ and $s=2$, the result follows from Theorem 2.13. So, let $2 \leq r \leq s$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ and Y $=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ be the bipartite sets of G. Let $r=2$ and $s \geq 3$. Let $e_{1 j}=x_{1} y_{j}$ and $e_{2 j}=x_{2} y_{j}$ $(1 \leq j \leq s)$, assign $c\left(e_{1 j}\right)=c_{j}(1 \leq j \leq s)$ and $c\left(e_{2 j}\right)=c_{j+1}(1 \leq j \leq s-1)$ and $c\left(e_{2 s}\right)=s+1$ so that $\chi_{s t}^{\prime}(G)=s+1$. Since $\left\{e_{11}, e_{2 s}\right\}$ is the set of all star edge chromatic edge of G, by Theorem 2.9, $f_{\chi_{s t}^{\prime}}(G) \leq s+1-2=s-1$. Let S be a star edge chromatic edge set of G. We prove that $f_{\chi_{s t}^{\prime}}(S)=s-1$. On the contrary suppose that $f_{\chi_{s t}^{\prime}}(G) \leq s-2$. Then there exists a forcing subset T of S such that $|T| \leq s-2$. Let $e \in S$ such that $e \notin T$. Then e is not a star edge chromatic edge of G. Without loss of generality, let us assume that $c(e)=c_{1}$. Since $s \geq 3$, there exists $f \in E(G)$ such that $c(f)=c_{1}$. Let $S^{\prime}=[S-\{e\}] \cup\{f\}$. Then S^{\prime} is a $\chi_{s t}^{\prime}$-set of G. Hence T is a proper subset of a $\chi_{s t}^{\prime}$-set S^{\prime} of G, which is a contradiction. Therefore $f_{\chi_{s t}^{\prime}}(G)=s-1$.
Let $r=3, s \geq 3$. Let $e_{i j}=x_{1} y_{j}, e_{2 j}=x_{2} y_{j}, e_{3 j}=x_{3} y_{j}(1 \leq j \leq s)$. Assign $c\left(e_{1 j}\right)=c_{j}(1 \leq$ $j \leq s), \mathrm{c}\left(\mathrm{e}_{2 j}\right)=c_{j+1}(1 \leq j \leq s-1), c\left(e_{3 j}\right)=c_{j+2}(1 \leq j \leq s-2)$ and $c\left(e_{3 s}\right)=s+2$ so that $\chi_{s t}^{\prime}(G)=s+2$. Since $\left\{e_{11}, e_{3 s}\right\}$ are the star edge chromatic edges of G, by Theorem 2.9, $f_{\chi_{s t}^{\prime}}(G) \leq s+2-2=s$. Let S be a star edge chromatic edge set of G. We prove that $f_{\chi_{s t}^{\prime}}(G)=s$. On the contrary, suppose that $f_{\chi_{s t}^{\prime}}(G) \leq s-1$. Then there exists a forcing subset T of S such that $|T| \leq s-1$. Let $e \in S$ such that $e \notin T$. Then e is not a star edge chromatic edge of G. Without loss of generality, let us assume that $c(e)=c_{1}$. Since $s \geq 3$, there exists $f \in E(G)$ such that $c(f)=c_{1}$. Let $S^{\prime}=[S-\{e\}] \cup\{f\}$. Then S^{\prime} is a $\chi_{s t}^{\prime}$-set of G, which is a contradiction.

Therefore Hence T is a proper subset of a $\chi_{s t}^{\prime}$-set S^{\prime} of G, which is a contradiction. Therefore $f_{\chi_{s t}^{\prime}}(S)=s$. Since this is true for all $\chi_{s t}^{\prime}-\operatorname{set} S$ of $G, f_{\chi_{s t}^{\prime}}^{\prime}(G)=s$.
Let $r \geq 4, s \geq 4$. Let $e_{i j}=x_{1} y_{j}, e_{2 j}=x_{2} y_{j}, \ldots, e_{i}=x_{i} y_{j}(1 \leq i \leq r),(1 \leq j \leq s)$. Assign $c\left(e_{1 j}\right)=$ $c_{j}(1 \leq j \leq s), c\left(e_{2 j}\right)=c_{j+1}(1 \leq j \leq s-1), \ldots, c\left(e_{i j}\right)=c_{j+i-1}(1 \leq i \leq r)(1 \leq j \leq s-i+1)$ and $c\left(e_{i s}\right)=s+r-1$ so that $\chi_{s t}^{\prime}(G)=s+r-1$. Since $\left\{e_{11}, e_{r s}\right\}$ is the set of all star edge chromatic edges of G, by Theorem $2.9, f_{\chi_{s t}^{\prime}}(G) \leq s+r-3$. Let S be a star edge chromatic edge set of G. We prove that $f_{\chi_{s t}^{\prime}}(S)=s+r-3$. On the contrary, suppose that $f_{\chi_{s t}^{\prime}}(S) \leq s+r-4$. Then there exists a forcing subset T of S such that $|T| \leq s+r-4$. Let $e \in S$ such that $e \notin T$. Then e is not a star edge chromatic edge of G. Without loss of generality, let us assume that $c(e)=c_{1}$. Since $s \geq 3$, there exists $f \in E(G)$ such that $c(f)=c_{1}$. Let $S^{\prime}=[S-\{e\}] \cup\{f\}$. Then S^{\prime} is a $\chi_{s t}^{\prime}$-set of G. which is a contradiction. Therefore $f_{\chi_{s t}^{\prime}}(S)=s+r-3$. Since this is true for all $\chi_{s t}^{\prime}$-set S of $G, f_{\chi_{s t}^{\prime}}(G)=s+r-3$.
Theorem 2.12. For the path $G=P_{n}(n \geq 3), f_{\chi_{s t}^{\prime}}(G)= \begin{cases}0 & \text { if } n=3,4 \\ 1 & \text { if } n=5 \\ 2 & \text { if } n=6 \\ 3 & \text { otherwise }\end{cases}$
Proof. Let P_{n} be $v_{1}, v_{2}, \ldots, v_{n}$ and $e_{i}=v_{i-1} v_{i}(2 \leq i \leq n)$. For $n=3$ and $n=4, S=E(G)$ is the unique $\chi_{s t}^{\prime}$-set then the result follows from Observation 2.8 (a). For $n=5, \mathrm{~S}_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}$ and $S_{2}=\left\{e_{2}, e_{3}, e_{4}\right\}$ are the only $\chi_{s t}^{\prime}$-sets of G such that $f_{\chi_{s t}^{\prime}}(G)=1$. For $n=6, S_{1}=\left\{e_{1}, e_{2}, e_{3}\right\}, S_{2}$ $=\left\{e_{2}, e_{3}, e_{4}\right\}, S_{3}=\left\{e_{2}, e_{3}, e_{4}\right\}, S_{4}=\left\{e_{3}, e_{4}, e_{5}\right\}$ are the only $\chi_{s t}^{\prime}$-sets of G such that $f_{\chi_{s t}^{\prime}}(G)=2$. For $n \geq 7$, we consider the following cases.

Case (i) $n=3 r+1, r \geq 2$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r-2, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-1$, $c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r$. Then $S_{i j k}=\left\{e_{i}, e_{j}, e_{k}\right\}$ and $S_{i k}=\left\{e_{i}, e_{3 r-2}, e_{k}\right\}$ are the $\chi_{s t}^{\prime}$-sets of G such that $\chi_{s t}^{\prime}\left(S_{i j k}\right)=\chi_{s t}^{\prime}\left(S_{i k}\right)=3$ for $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $\chi_{s t}^{\prime}(G)=3$. By Observation $2.3,0 \leq f_{\chi_{s t}^{\prime}}(G) \leq 3$. Since $\chi_{s t}^{\prime}$-set of G is not unique $f_{\chi_{s t}^{\prime}}(G) \geq 1$. It is easily observed that no singleton subsets or two elements subsets of $S_{i j k}$ for all $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ is a forcing subset of $S_{i j k}$ so that $f_{\chi s t}^{\prime}\left(S_{i j k}\right)=3$. Similarly no singleton or two element subsets of $S_{j k}$ is a forcing subset of $S_{i k}$
so that $f_{\chi_{s t}^{\prime}}\left(S_{j k}\right)=3$. Since this is true for all $\chi_{s t}^{\prime}$-set $S_{i j k}$ for all $i, j, k(i=1,4,3 r-2, j=$ $2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $f_{\chi_{s t}^{\prime}}(G)=3$.
Case (ii) $n=3 r+2, r \geq 2$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r+1, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-1$, $c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r$. Then $S_{i j k}=\left\{e_{i}, e_{j}, e_{k}\right\}, S_{i j}=\left\{e_{i}, e_{j}, e_{3 r-2}\right\}, S_{i}=\left\{e_{i}, e_{3 r+1}, e_{3 r-1}\right\}$ are the $\chi_{s t}^{\prime}$-sets of G such that $\chi_{s t}^{\prime}\left(S_{i j k}\right)=\chi_{s t}^{\prime}\left(S_{i k}\right)=\chi_{s t}^{\prime}\left(S_{i j}\right)=\chi_{s t}^{\prime}\left(S_{i}\right)=3$ for $i, j, k(i=1,4, \ldots, 3 r+$ $1, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $\chi_{s t}^{\prime}(G)=3$. By Observation $2.3,0 \leq f_{\chi_{s t}^{\prime}}(G) \leq 3$. Since $\chi_{s t}^{\prime}$-set of G is not unique $f_{\chi_{s t}^{\prime}}^{\prime}(G) \geq 1$. It is easily observed that no singleton subsets or two elements subsets of $S_{i j k}$ for all $i, j, k(i=1,4, \ldots, 3 r+1, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ is a forcing subset of $S_{i j k}$ so that $f_{\chi s t}^{\prime}\left(S_{i j k}\right)=3$. Similarly no singleton or two element subsets of $S_{j k}$ for all $i, k(i=1,4, \ldots, 3 r+1, k=3,6, \ldots, 3 r)$ is a forcing subset of $S_{i k}$ so that $f_{\chi_{s t}^{\prime}}\left(S_{i k}\right)=3$. Similarly no singleton subsets or two elements subsets of $S_{i j}$ for all $i, j, k(i=1,4, \ldots, 3 r+1, j=$ $2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ is a forcing subset of $S_{i j k}$ so that $f_{\chi s t}^{\prime}\left(S_{i j k)}=3\right.$. Similarly no singleton or two element subsets of $S_{i j}$ for all $i, j(i=1,4, \ldots, 3 r+1, j=2,5, \ldots, 3 r-1)$ is a forcing subset of $S_{i j}$ so that $f_{\chi_{s t}^{\prime}}^{\prime}\left(S_{i j}\right)=3$. Similarly no singleton subsets or two elements subsets of S_{i} for all $i(i=1,4, \ldots, 3 r+1)$ is a forcing subset of S_{i} so that $f_{\chi s t}^{\prime}\left(S_{i)=3}\right.$. Since this is true for all $\chi_{s t}^{\prime}$-sets $S_{i j k}, S_{i k}, S_{i j}$ and S_{i} for all $i, j, k(i=1,4, \ldots, 3 r+1, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $f_{\chi_{s t}^{\prime}}(G)=3$.
Case (iii) $n=3 r, r \geq 3$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r-2, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-1$, $c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r-3$. Then $S_{i j k}=\left\{e_{i}, e_{j}, e_{k}\right\}$ is a $\chi_{s t}^{\prime}$-set of G such that $\chi_{s t}^{\prime}\left(S_{i j k}\right)=$ 3 for $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r-3)$ so that $\chi_{s t}^{\prime}(G)=3$. By Observation 2.3, $0 \leq f_{\chi_{s t}^{\prime}}^{\prime}(G) \leq 3$. Since $\chi_{s t}^{\prime}$-set of G is not unique $f_{\chi_{s t}^{\prime}}(G) \geq 1$. It is easily observed that no singleton subsets or two elements subsets of $S_{i j k}$ for all $i, j, k(i=1,4, \ldots, 3 r-$ $2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r-3)$ is a forcing subset of $S_{i j k}$ so that $f_{\chi s t}^{\prime}\left(S_{i j k}\right)=3$. Since this is true for all $\chi_{s t}^{\prime}$-set $S_{i j k}$ for all $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r-$ 3) so that $f_{\chi_{s t}^{\prime}}(G)=3$.

Theorem 2.13. For the cycle $G=C_{n}(n \geq 4), f_{\chi_{s t}^{\prime}}(G)= \begin{cases}0 & \text { if } n=4,5 \\ 3 & \text { otherwise }\end{cases}$

Proof. Let C_{n} be $v_{1}, v_{2}, \ldots, v_{n}, v_{1}$ and $e_{i}=v_{i-1} v_{i}(2 \leq i \leq n), e_{n}=v_{n} v_{1}$. For $n=4$ and $5, S=$ $E(G)$ is the unique $\chi_{s t}^{\prime}$-set so that $f_{\chi_{s t}^{\prime}}(G)=0$. For $n \geq 6$, we consider the following cases.
Case (i) $n=3 r, r \geq 2$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r-2, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-1$, $c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r$. Then $S_{i j k}=\left\{e_{i}, e_{j}, e_{k}\right\}$ is a $\chi_{s t}^{\prime}$-set of G such that $\chi_{s t}^{\prime}\left(S_{i j k}\right)=3$ for all $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $\chi_{s t}^{\prime}\left(S_{i j k}\right)=3$. By Observation 2.3, $0 \leq f_{\chi_{s t}^{\prime}}(G) \leq 3$. Since $\chi_{s t}^{\prime}$-set of G is not unique $f_{\chi_{s t}^{\prime}}(G) \geq 1$. It is easily observed that no singleton subsets or two elements subsets of $S_{i j k}$ for all $i, j, k(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-$ $1, k=3,6, \ldots, 3 r)$ is a forcing subset of $S_{i j k}$ so that $f_{\chi s t}^{\prime}\left(S_{i j k}\right)=3$. Since this is true for all $\chi_{s t}^{\prime}$-set $S_{i j k}$ for all $i, j, k(i=1,4,3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r)$ so that $f_{\chi_{s t}^{\prime}}(G)=3$.
Case (ii) $n=3 r+1, r \geq 2$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r-2, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-1$, $c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r, c\left(e_{n}\right)=4, n=3 r+1$. Then $S_{i j k n}=\left\{e_{i}, e_{j}, e_{k}, e_{n}\right\}$ and $S_{i k n}=$ $\left\{e_{i}, e_{3 r-2}, e_{k}, e_{n}\right\}$ are the $\chi_{s t}^{\prime}$-sets of G such that $\chi_{s t}^{\prime}\left(S_{i j k n}\right)=\chi_{s t}^{\prime}\left(S_{i k n}\right)=4$ for all $i, j, k, n(i=$ $1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r, n=3 r+1)$ so that $\chi_{s t}^{\prime}(G)=4$ and $f_{\chi_{s t}^{\prime}}\left(S_{i j k n}\right)=$ $f_{\chi_{s t}^{\prime}}\left(S_{i k n}\right)=3$. Since this is true for all $i, j, k, n(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=$ $3,6, \ldots, 3 r, n=3 r+1), f_{\chi_{s t}^{\prime}}(G)=3$.
Case (iii) $n=3 r+2, r \geq 2$. Assign $c\left(e_{i}\right)=1, i=1,4, \ldots, 3 r-2, c\left(e_{j}\right)=2, j=2,5, \ldots, 3 r-$ $1, c\left(e_{k}\right)=3, k=3,6, \ldots, 3 r, c\left(e_{n-1}\right)=4, n=3 r+2, c\left(e_{n}\right)=5, n=3 r+2$. Then $S_{i j k n}=\left\{e_{i}, e_{j}, e_{k}, e_{n-1}, e_{n}\right\}, S_{i k n}=\left\{e_{i}, e_{3 r-2}, e_{k}, e_{n-1}, e_{n}\right\}, S_{i j n}=\left\{e_{i}, e_{j}, e_{3 r-1}, e_{n-1}, e_{n}\right\}, S_{i n}=$ $\left\{e_{i}, e_{3 r-2}\right.$,
$\left.\mathrm{e}_{3 r-1}, e_{n-1}, e_{n}\right\}$ are the only $\chi_{s t}^{\prime}$-sets of G such that $\chi_{s t}^{\prime}\left(S_{i j k n}\right)=\chi_{s t}^{\prime}\left(S_{i k n}\right)=\chi_{s t}^{\prime}\left(S_{i j n}\right)=\chi_{s t}^{\prime}\left(S_{i n}\right)=$ 5 for all $i, j, k, n(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r, n=3 r+2)$ so that $\chi_{s t}^{\prime}(G)=5$ and $f_{\chi_{s t}^{\prime}}\left(S_{i j k n}\right)=f_{\chi_{s t}^{\prime}}^{\prime}\left(S_{i k n}\right)=f_{\chi_{s t}^{\prime}}\left(S_{i j n}\right)=f_{\chi_{s t}^{\prime}}^{\prime}\left(S_{i n}\right)=3$. Since this is true for all $i, j, k, n(i=1,4, \ldots, 3 r-2, j=2,5, \ldots, 3 r-1, k=3,6, \ldots, 3 r, n=3 r+2), f_{\chi_{s t}^{\prime}}(G)=3$.

Theorem 2.14. For every pair a and b of integers with $0 \leq a<b$ and $b>a+2$ there exists a connected graph G such that $f_{\chi_{s t}^{\prime}}(G)=a$ and $\chi_{s t}^{\prime}(G)=b$.

Proof. For $a=0$ and $b \geq 2$, let $G=K_{b}$. Then by Observation 2.9(a) and Theorem 1.1, $f_{\chi_{s t}^{\prime}}(G)=$ 0 and $\chi_{s t}^{\prime}(G)=b$. For $a=1, b=3$, let $G=P_{5}$. Then by Theorem 2.12, $f_{\chi_{s t}^{\prime}}(G)=1$ and $\chi_{s t}^{\prime}(G)=3$. Let $P_{5}: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Let G be the graph obtained from P_{5} by adding new vertices $z_{1}, z_{2}, \ldots, z_{b-3}$ and introducing edge $v_{1} z_{i}(1 \leq i \leq b-3)$. The graph G is shown in Figure 2.4.

Let $c\left(v_{1} z_{1}\right)=1, c\left(v_{1} z_{2}\right)=2, c\left(v_{1} z_{b-2}\right)=b-3, c\left(v_{1} v_{2}\right)=b-2, c\left(v_{2} v_{3}\right)=b-1, c\left(v_{3} v_{4}\right)=b$, $c\left(v_{4} v_{5}\right)=b-2$. Then $Z=\left\{v_{1} z_{1}, v_{2} z_{2}, \ldots, v_{1} z_{b-3}, v_{2} v_{1}, v_{3} v_{4}\right\}$ is the set of all star edge chromatic edge of G. Then $S_{1}=Z \cup\left\{v_{1} v_{2}\right\}$ and $S_{2}=Z \cup\left\{v_{4} v_{5}\right\}$ are the only two $\chi_{s t}^{\prime}$-sets of G such that $f_{\chi_{s t}^{\prime}}\left(S_{1}\right)=\mathrm{f}_{\chi_{s t}^{\prime}}\left(S_{2}\right)=1$ so that $f_{\chi_{s t}^{\prime}}(G)=1$ and $\chi_{s t}^{\prime}(G)=b$. So, let $a \geq 2$ and $b \geq 4$. Let $H=K_{3}, a$ be a complete bipartite graph with bipartite sets $X_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $Y_{1}=\left\{y_{1}, y_{2}, \ldots, y_{a}\right\}$. Let G be the graph obtained from H by adding new vertices $z_{1}, z_{2}, \ldots, z_{b-a-2}$ and introducing edges $x_{1} z_{i}(1 \leq i \leq a-2)$. The graph G is shown in Figure 2.5.

Assign $c\left(x_{1} y_{i}\right)=c_{i}(1 \leq i \leq a), c\left(x_{2} y_{i}\right)=c_{i+1}(1 \leq i \leq a), c\left(x_{3} y_{i}\right)=c_{i+2}(1 \leq i \leq a)$, $c\left(x_{i} z_{i}\right)=c_{a+2+i}(1 \leq i \leq b-a-2)$. Then C is a proper star edge colouring of G such that $\chi_{s t}^{\prime}(G)=a+2+b-a-2=b$.

We prove that $f_{\chi_{s t}^{\prime}}(G)=a$. Let $Z=\left\{x_{1} z_{1}, x_{1} z_{2}, \ldots, x_{1} z_{b-a-2}, x_{3} y_{a}\right\}$ be the set of all star edge chromatic edge of G. By Theorem 2.9, $f_{\chi_{s t}^{\prime}}(G) \leq b-(b-a-2+2)=a$. Suppose that $f_{\chi_{s t}^{\prime}}(G)<a$. Then there exists a forcing subset T of S such that $|T| \leq a-1$. Let $e \in Z$ such that $e \notin T$. Then e is not a star edge chromatic edge of G. Without loss of generality, let us assume $c(e)=c_{2}$. Since $a \geq 2$, there exists $f \in E(G)$ such that $c(f)=c_{2}$. Let $Z^{\prime}=[Z-\{e\}] \cup\{f\}$. Then Z^{\prime} is a $\chi_{s t}^{\prime}$-set of G. Hence T is a proper subset of $\chi_{s t}^{\prime}$-set of Z^{\prime} of G, which is a contradiction. Therefore $f_{\chi_{s t}^{\prime}}(G)=a$.

Figure 2.5

3. Conclusion

In this paper, we studied the concept of forcing star edge chromatic number of a graph. We extend this concept to graph products in future work.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] Alexander Soifer, Edge Chromatic Number of a Graph, The Mathematical Coloring Book, (2009), 127-139.
[2] Asmiati, I.K.S.G. Yana, and L. Yulianti, On the Locating Chromatic Number of Certain Barbell Graphs, Int. J. Math. Math. Sci. 2018 (2018), Article ID 5327504.
[3] S.B. Samli, J. John and S.R. Chellathurai, The double geo chromatic number of a graph, Bull. Int. Math. Virtual Inst. 11(1) (2021), 25-38.
[4] B. Omoomi, M.V. Dastjerdi and Y. Yektaeian, Star Edge Coloring of Cactus Graphs, Iran. J. Sci. Technol. Trans. A: Sci. 44 (1) (2020), 1633-1639.
[5] S. Butenko, P. Festa, P.M. Pardalos, On the Chromatic Number of Graphs, J. Optim. Theory Appl. 109 (2001), 69-83.
[6] D. Xie, H. Xiao and Z. Zhao, Star coloring of cubic graphs, Inform. Proc. Lett. 114(12) (2014), 689-691.
[7] G. Fertin, Andre Raspaud and Bruce Reed, Star coloring of graphs, J. Graph Theory, 47(3) (2004), 163-182.
[8] G. Agnarsson, R. Greenlaw, Graph Theory: Modeling, Application and Algorithms, Pearson, (2007).
[9] P. Formanowicz, K. Tanas, A survey of graph coloring - its types, methods and applications, Found. Comput. Decision Sci. 37 (2012), 223-238.
[10] L. Bezegova, B. Luzar, M. Mockovciakova, R. Sotak, R. Skrekovski, Star Edge Coloring of Some Classes of Graphs, J. Graph Theory, 81(1) (2016), 73-82.
[11] R. Suganya and V.S. Flower, The forcing star chromatic number of a graph, (Communicated).
[12] R. Suganya and V.S. Flower, The chromatic detour number of a graph, (Communicated).
[13] R. Suganya and V. Sujin Flower, The forcing chromatic number of a graph, (Communicated).
[14] Y. Cao, G. Chen, G. Jing, M. Stiebitz, B. Toft, Graph Edge Coloring: A Survey, Graphs Comb. 35 (2019), 33-66.

[^0]: *Corresponding author
 E-mail address: suganya.maths34@gmail.com
 ${ }^{\dagger}$ Register Number. 18223232092002 , Research Scholar
 Received July 23, 2021

